Cytoplasmic Compartmentalization of the Fetal piRNA Pathway in Mice

نویسندگان

  • Alexei A. Aravin
  • Godfried W. van der Heijden
  • Julio Castañeda
  • Vasily V. Vagin
  • Gregory J. Hannon
  • Alex Bortvin
چکیده

Derepression of transposable elements (TEs) in the course of epigenetic reprogramming of the mouse embryonic germline necessitates the existence of a robust defense that is comprised of PIWI/piRNA pathway and de novo DNA methylation machinery. To gain further insight into biogenesis and function of piRNAs, we studied the intracellular localization of piRNA pathway components and used the combination of genetic, molecular, and cell biological approaches to examine the performance of the piRNA pathway in germ cells of mice lacking Maelstrom (MAEL), an evolutionarily conserved protein implicated in transposon silencing in fruit flies and mice. Here we show that principal components of the fetal piRNA pathway, MILI and MIWI2 proteins, localize to two distinct types of germinal cytoplasmic granules and exhibit differential association with components of the mRNA degradation/translational repression machinery. The first type of granules, pi-bodies, contains the MILI-TDRD1 module of the piRNA pathway and is likely equivalent to the enigmatic "cementing material" first described in electron micrographs of rat gonocytes over 35 years ago. The second type of granules, piP-bodies, harbors the MIWI2-TDRD9-MAEL module of the piRNA pathway and signature components of P-bodies, GW182, DCP1a, DDX6/p54, and XRN1 proteins. piP-bodies are found predominantly in the proximity of pi-bodies and the two frequently share mouse VASA homolog (MVH) protein, an RNA helicase. In Mael-mutant gonocytes, MIWI2, TDRD9, and MVH are lost from piP-bodies, whereas no effects on pi-body composition are observed. Further analysis revealed that MAEL appears to specifically facilitate MIWI2-dependent aspects of the piRNA pathway including biogenesis of secondary piRNAs, de novo DNA methylation, and efficient downregulation of TEs. Cumulatively, our data reveal elaborate cytoplasmic compartmentalization of the fetal piRNA pathway that relies on MAEL function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIWI2 rs508485 Polymorphism Is Associated with Non-obstructive Azoospermia in Iranian Patients

Background: The PIWI-interacting RNA (piRNA) pathway has an essential role in transposon silencing, meiosis progression, spermatogenesis, and germline maintenance. HIWI genes are critical for piRNA biogenesis and function. Therefore, polymorphisms in HIWI genes contribute to spermatogenesis defects and can be considered as risk factors for male infertility. The aim of the present study was to i...

متن کامل

Reduced pachytene piRNAs and translation underlie spermiogenic arrest in Maelstrom mutant mice.

Pachytene piRNAs are a class of Piwi-interacting small RNAs abundant in spermatids of the adult mouse testis. They are processed from piRNA primary transcripts by a poorly understood mechanism and, unlike fetal transposon-derived piRNAs, lack complementary targets in the spermatid transcriptome. We report that immunopurified complexes of a conserved piRNA pathway protein Maelstrom (MAEL) are en...

متن کامل

Paramutation in Drosophila Requires Both Nuclear and Cytoplasmic Actors of the piRNA Pathway and Induces Cis-spreading of piRNA Production.

Transposable element activity is repressed in the germline in animals by PIWI-interacting RNAs (piRNAs), a class of small RNAs produced by genomic loci mostly composed of TE sequences. The mechanism of induction of piRNA production by these loci is still enigmatic. We have shown that, in Drosophila melanogaster, a cluster of tandemly repeated P-lacZ-white transgenes can be activated for piRNA p...

متن کامل

Distinct Roles of RNA Helicases MVH and TDRD9 in PIWI Slicing-Triggered Mammalian piRNA Biogenesis and Function

Small RNAs called PIWI-interacting RNAs (piRNAs) act as an immune system to suppress transposable elements in the animal gonads. A poorly understood adaptive pathway links cytoplasmic slicing of target RNA by the PIWI protein MILI to loading of target-derived piRNAs into nuclear MIWI2. Here we demonstrate that MILI slicing generates a 16-nt by-product that is discarded and a pre-piRNA intermedi...

متن کامل

Retrotransposon Silencing by piRNAs: Ping-Pong Players Mark Their Sub-Cellular Boundaries

Germ cells of many animals exhibit characteristic cytoplasmic structures— termed germ granules or nuage—which are ribonucleoprotein (RNP) amorphous aggregates without limiting membranes and are often closely associated with nuclei or mitochondria [1]. In several model animals, such as Drosophila, Caenorhabditis elegans, and Xenopus, studies on germ granules have mainly focused on their asymmetr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2009